Federal Aviation Administration, DOT - (ii) The limit engine torque specified in §27.361. - (2) The limit torque must be distributed to the rotor blades in a rational manner. (Secs. 604, 605, 72 Stat. 778, 49 U.S.C. 1424, 1425) [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964, as amended by Amdt. 27–3, 33 FR 14105, Sept. 18, 1968] ## § 27.549 Fuselage, landing gear, and rotor pylon structures. - (a) Each fuselage, landing gear, and rotor pylon structure must be designed as prescribed in this section. Resultant rotor forces may be represented as a single force applied at the rotor hub attachment point. - (b) Each structure must be designed to withstand— - (1) The critical loads prescribed in §§ 27.337 through 27.341; - (2) The applicable ground loads prescribed in §§ 27.235, 27.471 through 27.485, 27.493, 27.497, 27.501, 27.505, and 27.521; and - (3) The loads prescribed in $\S27.547$ (d)(2) and (e). - (c) Auxiliary rotor thrust, and the balancing air and inertia loads occurring under accelerated flight conditions, must be considered. - (d) Each engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (Secs. 604, 605, 72 Stat. 778, 49 U.S.C. 1424, 1425) [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964, as amended by Amdt. 27–3, 33 FR 14105, Sept. 18, 1968] EMERGENCY LANDING CONDITIONS ## § 27.561 General. - (a) The rotorcraft, although it may be damaged in emergency landing conditions on land or water, must be designed as prescribed in this section to protect the occupants under those conditions. - (b) The structure must be designed to give each occupant every reasonable chance of escaping serious injury in a crash landing when— - (1) Proper use is made of seats, belts, and other safety design provisions; - (2) The wheels are retracted (where applicable); and - (3) Each occupant and each item of mass inside the cabin that could injure an occupant is restrained when subjected to the following ultimate inertial load factors relative to the surrounding structure: - (i) Upward—4g. - (ii) Forward—16g. - (iii) Sideward-8g. - (iv) Downward—20g, after intended displacement of the seat device. - (v) Rearward—1.5g. - (c) The supporting structure must be designed to restrain, under any ultimate inertial load up to those specified in this paragraph, any item of mass above and/or behind the crew and passenger compartment that could injure an occupant if it came loose in an emergency landing. Items of mass to be considered include, but are not limited to, rotors, transmissions, and engines. The items of mass must be restrained for the following ultimate inertial load factors: - (1) Upward—1.5g. - (2) Forward—12g. - (3) Sideward—6g. - (4) Downward—12g. - (5) Rearward—1.5g - (d) Any fuselage structure in the area of internal fuel tanks below the passenger floor level must be designed to resist the following ultimate inertial factors and loads and to protect the fuel tanks from rupture when those loads are applied to that area: - (i) Upward—1.5g. - (ii) Forward—4.0g. - (iii) Sideward—2.0g. - (iv) Downward-4.0g. [Doc. No. 5074, 29 FR 15695, Nov. 24, 1964, as amended by Amdt. 27–25, 54 FR 47318, Nov. 13, 1989; Amdt. 27–30, 59 FR 50386, Oct. 3, 1994; Amdt. 27–32, 61 FR 10438, Mar. 13, 1996] ## § 27.562 Emergency landing dynamic conditions. - (a) The rotorcraft, although it may be damaged in an emergency crash landing, must be designed to reasonably protect each occupant when— - (1) The occupant properly uses the seats, safety belts, and shoulder harnesses provided in the design; and